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Chronic inflammation in adipose tissue plays a key role in obesity-
induced insulin resistance. However, the mechanisms underlying
obesity-induced inflammation remain elusive. Here we show that
obesity promotes mtDNA release into the cytosol, where it triggers
inflammatory responses by activating the DNA-sensing cGAS-
cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A
oxidoreductase-like protein (DsbA-L), a chaperone-like protein orig-
inally identified in the mitochondrial matrix, impaired mitochondrial
function and promoted mtDNA release, leading to activation of the
cGAS-cGAMP-STING pathway and inflammatory responses. Con-
versely, fat-specific overexpression of DsbA-L protected mice against
high-fat diet-induced activation of the cGAS-cGAMP-STING pathway
and inflammation. Taken together, we identify DsbA-L as a key
molecule that maintains mitochondrial integrity. DsbA-L deficiency
promotes inflammation and insulin resistance by activating the
cGAS-cGAMP-STING pathway. Our study also reveals that, in
addition to its well-characterized roles in innate immune surveil-
lance, the cGAS-cGAMP-STING pathway plays an important role in
mediating obesity-induced metabolic dysfunction.
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Obesity has reached epidemic proportions globally, and is
associated with various metabolic diseases such as type II

diabetes, cardiovascular disease, and many types of cancer. Numerous
studies have shown that chronic sterile inflammation in white adipose
tissue (WAT), a major depot for chemical energy storage in the form
of triglyceride (TG) and for hormone and cytokine production in
response to nutritional and environmental changes, plays a key role in
mediating obesity-induced insulin resistance and its associated meta-
bolic diseases (1, 2). However, the mechanisms underlying obesity-
induced inflammation remain to be completely elucidated.
Mitochondria are regarded as “end-function” organelles, which

receive various signals from cells to produce ATP and regulate
energy homeostasis in response to environmental and physiolog-
ical changes. However, accumulating evidence suggests that mi-
tochondria are also places of information integration and release
to maintain cell homeostasis (3–6). Under stress conditions,
damaged mitochondria can release a number of inflammation-
promoting signals such as reactive oxygen species (ROS),
mitochondria-derived peptides, Ca2+, cytochrome c, and some
yet-to-be-characterized signals in response to the altered cellular
changes (6, 7). Thus, mitochondrial dysfunction-triggered acti-
vation of inflammatory signaling pathways could be a potential
mechanism underlying obesity-induced insulin resistance.
The cGMP-AMP (cGAMP) synthase (cGAS; also known as

MB21D1) has recently been identified as a cytosolic DNA sensor

of pathogen-derived DNA that activates the type I IFN response
by synthesizing the eukaryotic secondary messenger 2′3′-cGAMP
in response to viral and microbial infections (8, 9). cGAMP binds
to the adaptor protein STING (also known as TMEM173),
leading to the activation of a protective, antiviral signaling cas-
cade in innate immune cells (4, 9). A recent finding suggests that,
in addition to pathogen-derived DNA from microbial infection,
the cGAS-cGAMP-STING pathway could also be activated by
cytosolic mitochondrial DNA (mtDNA) (4, 10, 11). Unlike nu-
clear DNAs, which are highly packaged by enriched histones,
mtDNAs lack protective histones and are particularly susceptible
to attack by mitochondrial damaging factors such as ROS (12).
Under certain pathophysiological conditions such as autoim-
mune diseases, increased mitochondrial stress leads to ROS
overproduction as well as mtDNA oxidation and packaging dis-
turbance, triggering mtDNA release to the cytoplasm (3, 4, 13,
14). However, whether obesity induces mtDNA release and ac-
tivates the cGAS-cGAMP-STING signaling pathway and, if yes,
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whether the pathway contributes to obesity-induced sterile in-
flammation and insulin resistance, remain unexplored.
In the current study, we show that obesity induces mtDNA

release, which triggers the activation of the cGAS-cGAMP-
STING pathway and a consequent increase in chronic sterile in-
flammatory response in adipose tissue. Obesity-induced activation
of the cGAS-cGAMP-STING pathway could be prevented by
overexpression of disulfide bond A oxidoreductase-like protein
(DsbA-L), a protein originally identified from the mitochondrial
matrix of rat liver (15). On the other hand, adipose tissue-specific
ablation of DsbA-L led to mitochondrial dysfunction and in-
creased mtDNA release, triggering the activation of the cGAS-
cGAMP-STING pathway, increased inflammation, and exacer-
bated obesity-induced insulin resistance. Our study has uncovered
a signaling mechanism underlying the link between obesity-induced
mitochondrial dysfunction and inflammation.

Results
Obesity Triggers Activation of the cGAS-cGAMP-STING Pathway Through
mtDNA Release in Adipose Tissues.The expression levels of cGAS and
STING were markedly increased in inguinal WAT (iWAT) and
epididymal WAT (eWAT) of high-fat diet (HFD)-induced obese
mice, which were associated with down-regulation of DsbA-L
(Fig. 1A and Fig. S1A). Concurrent with the activation of the
cGAS-cGAMP-STING pathway, obesity greatly increased the
phosphorylation of TBK1, NF-κB p65, and IRF3, as well as the ex-
pression of TNF-α, in fat tissue (Fig. 1A and Fig. S1A). Given that
adipose tissue not only contains adipocytes but also macrophages
and other cells, we examined the activation of the cGAS-cGAMP-
STING pathway in purified adipocytes, F4/80+macrophages (MΦs),
and the macrophage-negative stromal vascular fraction (SVF-MΦ-
Neg). We found that HFD feeding greatly activates the cGAS-
cGAMP-STING pathway not only in adipocytes (Fig. 1B and Fig.
S1B) but also in MΦ and SVF-MΦ-Neg fractions (Fig. S1 C–G),
suggesting that activation of the cGAS-cGAMP-STING pathway in
both adipocytes and macrophages may contribute to HFD-induced
inflammation.
To determine whether obesity-induced activation of the

cGAS-cGAMP-STING pathway is due to enhanced mtDNA
release into the cytosol, we purified total DNA from the cytosolic
fraction of adipocytes freshly isolated from normal diet (ND)-
or HFD-fed mice. The purity of the cytosolic fraction was
confirmed by cell-fractionation studies, which showed no con-
tamination with the mitochondrial marker Complex IV, the en-
doplasmic reticulum (ER) marker Erp57, and the nuclear
markers Lamin A and Tert (Fig. S1H and I). mtDNA levels were
significantly increased in the cytosol of adipocytes from HFD-
induced obese mice compared with control mice (Fig. 1C and

Fig. S1J). Enhanced cGAS-cGAMP-STING signaling and re-
duced DsbA-L expression were also observed in eWAT and
iWAT from db/db mice compared with their control littermates
(Fig. 1D and Fig. S1K). Taken together, these findings suggest
that activation of the cGAS-cGAMP-STING pathway by
mtDNA release could be a potential mechanism underlying
obesity-induced inflammation.

Adipose Tissue-Specific Disruption of DsbA-L Exacerbates High-Fat
Diet-Induced Obesity and Insulin Resistance. The negative associ-
ation between DsbA-L expression and cGAS-cGAMP-STING
pathway activation in obese adipose tissue suggests that DsbA-L
deficiency may play a role in diet-induced activation of the cGAS-
cGAMP-STING pathway. To test this possibility, we generated fat-
specific DsbA-L knockout mice (DsbA-LfKO) by crossing DsbA-L
floxed mice (16) with adiponectin-Cre mice (Fig. 2A). Fat-specific
knockout of DsbA-L had no significant effect on food intake in
mice fed either an ND or an HFD (Fig. S2 A and B). However,
DsbA-LfKO mice gained more body weight than the wild-type
control mice under both ND- and HFD-feeding conditions (Fig.
2B). Consistent with these findings, DsbA-LfKO mice displayed
increased fat pad and fat mass (Fig. 2C and Fig. S2 C and D) but
showed no significant difference in fasting glucose levels (Fig. 2F),
bone mineral density (Fig. S2E), or lean mass (Fig. S2 C and D)
compared with their control littermates fed an ND or HFD. He-
matoxylin and eosin (H&E) staining revealed that white adipocyte
size (Fig. S2 F and G) but not number (Fig. S2H) was greatly in-
creased in the DsbA-LfKO mice. In addition, larger multilocular
lipid droplets were observed in brown adipose tissue (BAT) of the
DsbA-LfKO mice compared with the Loxp control mice (Fig. S2F).
DsbA-L deficiency had no significant effect on liver morphology in
mice fed an ND but greatly promoted a fatty liver in mice fed an
HFD (Fig. 2C and Fig. S2F). Consistent with these findings, fat-
specific knockout of DsbA-L inhibited insulin signaling in adipose
tissue and promoted glucose and insulin intolerance in mice fed
either an ND or an HFD (Fig. 2 D–G). These findings uncover a
key role of adipose DsbA-L in the regulation of whole-body glucose
and lipid homeostasis.

DsbA-L Deficiency Impairs Mitochondrial Function and Promotes
mtDNA Release-Induced Activation of the cGAS-cGAMP-STING Pathway
and Inflammatory Response. Given that DsbA-L is localized in mi-
tochondria (15, 17), we sought to determine whether disrupting
DsbA-L expression in adipose tissue affects mitochondrial func-
tion. We found that DsbA-L deficiency significantly increased
mitochondrial ROS levels (Fig. S3A), concurrent with a significant
decrease in mitochondrial ATP levels and membrane potential
(Fig. S3 B and C). Consistent with diminished mitochondrial
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Fig. 1. mtDNA release activates the cGAS-cGAMP-STING pathway in adipose tissues of obese mice. (A) Immunoblot analysis for expression of STING, cGAS, TNF-α,
and DsbA-L and the phosphorylation of TBK1 at Ser172, IRF3 at Ser396, and NF-κB p65 at Ser536 in iWAT from normal chow diet- and high-fat diet-fed C57BL/6 mice.
(B) Immunoblot analysis of purified adipocytes from iWAT of ND- and HFD-fed C57BL/6mice. (C) Cytosolic mtDNA content in freshly purified adipocytes from iWAT of
ND- and HFD-fed C57BL/6 mice; n = 5. (D) Immunoblot analysis of iWAT from db/db mice and their control mice. Data are presented as mean ± SEM. *P < 0.05.
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function, primary adipocytes from DsbA-LfKO mice exhibited
lower basal and maximal respiration, as well as reduced spare re-
spiratory capacity, compared with primary adipocytes isolated
from control mice (Fig. S3 D and E), indicating that oxidative
phosphorylation was impaired in DsbA-L–deficient adipocytes.
Interestingly, there was a significant increase in mtDNA release
into the cytosol of adipocytes derived from iWAT and eWAT of
DsbA-LfKO mice compared with control littermates (Fig. 3A and
Fig. S4A). Increased mtDNA release was also observed in cultured
DsbA-L–deficient primary white adipocytes (Fig. S4B), indicating
that DsbA-L has a cell-autonomous effect on mtDNA release.
Concurrent with increased mtDNA release, 2′3′-cGAMP levels
and the phosphorylation of TBK1, IRF3, and NF-κB p65 were all
markedly increased in DsbA-L–deficient adipocytes (Fig. 3 B and
C). Consequently, DsbA-L deficiency greatly increased mRNA
expression of inflammatory genes such as TNF-α, MCP-1, IFN-α,
and IL-18 in cultured primary adipocytes (Fig. 3D), concurrent
with enhanced secretion of inflammatory cytokines in serum of
DsbA-LfKO mice (Fig. S4C). The activation of the cGAS-cGAMP-
STING signaling pathway was also observed in adipocytes freshly
isolated from DsbA-LfKO mice fed either an ND or HFD (Fig. 3E
and Fig. S4 D–F). We also observed a slight increase of the cGAS-
cGAMP-STING signaling pathway in MΦ and SVF-MΦ-Neg
fractions of the DsbA-LfKO mice (Fig. 3F and Fig. S4 G–I), in-
dicating cross-talk between adipocytes and adipose-resident mac-
rophages. Suppressing cGAS or STING expression in DsbA-L
knockout primary adipocytes by shRNA inhibited the phosphory-
lation of TBK1 and NF-κB p65 and reduced TNF-α gene ex-
pression (Fig. 3 G and H). In addition, treating DsbA-L–deficient
adipocytes with amlexanox, a selective inhibitor of TBK1 (18),
significantly diminished phosphorylation of IRF3 and TNF-α ex-
pression (Fig. S4J). These results provide strong evidence that
activation of the cGAS-cGAMP-STING signaling pathway plays a
contributing role in triggering inflammatory responses in adipose
tissue of the fat-specific DsbA-L knockout mice.
To further confirm if mtDNA release mediates DsbA-L

deficiency-induced activation of the cGAS-cGAMP-STING path-
way, we treated primary adipocytes with a low dose (150 to
450 ng/mL) of ethidium bromide (EtBr), a well-known mtDNA-

depleting compound that prevents mtDNA replication and tran-
scription without much effect on genomic DNA (10, 19). EtBr
treatment dramatically inhibited mtDNA expression (Fig. S5A)
and significantly reduced the phosphorylation of TBK1, NF-κB
p65, and IRF3 as well as TNF-α expression in DsbA-L–deficient
primary adipocytes (Fig. S5B). Similar results were also obtained
with another mtDNA-depletion compound, dideoxycytidine
(ddC), an mtDNA polymerase-γ inhibitor that has no effect on the
activity of nuclear DNA polymerases (10, 20) (Fig. S5 C and D).
Taken together, these results strongly suggest that mtDNA is the
major mediator of DsbA-L deficiency-induced activation of the
cGAS-cGAMP-STING signaling pathway and its downstream
inflammatory responses in adipocytes.

Overexpression of DsbA-L Protects Against mtDNA-Induced Activation
of the cGAS-cGAMP-STING Signaling Pathway Through an Adiponectin-
and ER Localization-Independent Mechanism. We previously found
that fat-specific overexpression of DsbA-L (DsbA-LfTG) protected
mice from HFD-induced obesity and inflammation (21). We spec-
ulated that overexpressing DsbA-L might suppress HFD-induced
inflammation through inhibition of the mtDNA release-activated
cGAS-cGAMP-STING signaling pathway. Consistent with this
view, HFD-induced mtDNA release was significantly suppressed
in adipocytes from eWAT and iWAT of DsbA-LfTG mice com-
pared with control mice (Fig. 4A and Fig. S6A), which correlated
with reduced activation of the cGAS-cGAMP-STING pathway in
both adipose tissue and purified adipocytes of HFD-fed mice (Fig.
4 B and C) as well as decreased serum levels of inflammatory
cytokines such as TNF-α, MCP-1, IL-18, IL-1β, IP-10, IL-5,
RANTES, MIP-1α, and IL-17A in DsbA-LfTG mice compared
with control mice (Fig. S6B). Reduced activation of the cGAS-
cGAMP-STING pathway was also observed in purified adipocytes
from DsbA-LfTG mice fed an ND (Fig. S6C) but not in MΦ and
SVF-MΦ-Neg fractions of the mice (Fig. S6 D and E). Treating
primary adipocytes with nigericin or ABT-737, two compounds
known to stimulate mtDNA release (11, 22), significantly in-
creased mtDNA release (Fig. S7 A and B), cGAMP levels (Fig.
S7C), phosphorylation of TBK1 and NF-κB p65, and the expres-
sion of inflammatory genes (Fig. S7 D–F). The stimulatory effects
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of nigericin and ABT-737 on mtDNA release, cGAMP levels, and
the expression of inflammatory genes, however, were all signifi-
cantly suppressed in cells overexpressing DsbA-L (Fig. S7). DsbA-L
has been reported to regulate adiponectin multimerization and

function (17, 21, 23). Consistent with this result, we found that fat-
specific knockout of DsbA-L significantly reduced the serum levels
and multimerization of adiponectin (Fig. S8). Given that adipo-
nectin has been reported to exert antiinflammatory function (24,
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25), we asked if some effects of DsbA-L on the mtDNA release-
activated cGAS-cGAMP-STING pathway are mediated by adi-
ponectin action. To test this, we examined the protective effect of
DsbA-L in fat-specific DsbA-L transgenic mice lacking adipo-
nectin (DsbA-LfTG/Ad−/−) (21). We found that HFD-induced
mtDNA release and activation of the cGAS-cGAMP-STING path-
way were significantly reduced in DsbA-LfTG/Ad−/− mice compared
with adiponectin knockout mice (Ad−/−) (Fig. 4 D and E and Fig.
S9), indicating that the protective effect of DsbA-L on the mtDNA
release-activated cGAS-cGAMP-STING pathway is adiponectin-
independent. Since DsbA-L is localized not only in mitochondria
but also in the ER (17), we examined whether ER localization is
necessary for DsbA-L to inhibit cGAS-cGAMP-STING signaling.
Transient overexpression of an ER localization-defective mutant
of DsbA-L (DsbA-LΔNT), which is unable to promote adiponectin
multimerization (17), prevented nigericin- and ABT-737–induced
activation of phosphorylation of TBK1 and IRF3 in adipocytes
(Fig. 4F). Taken together, these results suggest that mito-
chondrial localization plays a major role in DsbA-L suppressing
mtDNA release-induced activation of the cGAS-cGAMP-
STING pathway.

Discussion
Obesity triggers a state of chronic, low-grade inflammation in
insulin target tissues such as liver, muscle, and fat, leading to an
overproduction and secretion of cytokines and chemokines that
cause insulin resistance (1). While numerous studies strongly
suggest that inflammation plays a major role in obesity-induced
insulin resistance and various metabolic diseases, the precise
mechanisms underlying obesity-induced inflammation remain
uncertain. In the current study, we show that obesity induces
mtDNA release in adipose tissue, which activates the cGAS-
cGAMP-STING signaling pathway. In innate immune cells, ac-
tivation of the cGAS-cGAMP-STING pathway triggers the type I
IFN response, which has evolved as a major protective immune
defense mechanism for the detection and suppression of mi-
crobial infection (9, 14). However, overactivation of the cGAS-
cGAMP-STING pathway, which leads to an overproduction of
harmful proinflammatory cytokines, has been found in some
autoimmune disease patients (26–28). Our study shows that the
cGAS-cGAMP-STING pathway is activated in the adipose tissue
of obese mice. In addition, we demonstrate that inhibition of this
signaling pathway reduces obesity-induced inflammation and
improves metabolic homeostasis (Fig. 4 and Fig. S6). Notably, we
also observed an activation of the cGAS-cGAMP-STING path-
way in F4/80+ macrophages and the SVF in obese mice (Fig. S1
C–G), indicating a potential involvement of these cells in HFD-
induced inflammation. Taken together, these results uncover a
mechanism underlying obesity-induced inflammation and insulin
resistance and identify novel therapeutic targets for treating
obesity-induced inflammation and metabolic dysfunction.
In this study, we have uncovered an important role of DsbA-L

in regulating mitochondrial integrity and function. DsbA-L was
originally isolated from the mitochondrial matrix (15, 29). The role
of DsbA-L in mitochondria, however, remains unknown. We
found that disrupting DsbA-L expression in adipocytes significantly
impaired mitochondrial function and increased mtDNA release
into the cytosol, where it activated the cGAS-cGAMP-STING
pathway (Fig. 3 and Figs. S3 and S4). Conversely, fat-specific
overexpression of DsbA-L significantly alleviated obesity-induced
mtDNA release and activation of the cGAS-cGAMP-STING
pathway (Fig. 4 and Fig. S6). Activation of the cGAS-cGAMP-
STING pathway leads to the activation of downstream kinases
TBK1 and IKK, which phosphorylate and activate IRF3 and
NF-κB, triggering the expression of type I interferons and in-
flammatory cytokines such as TNF-α, IL-1β, IL-18, MCP-1,
RANTES, IL-6, and so forth (9, 30). Consistently, DsbA-L de-
ficiency in adipocytes significantly increased inflammatory gene

expression and cytokine secretion (Fig. 3D and Fig. S4C), whereas
fat-specific overexpression of DsbA-L suppressed HFD-induced
inflammation (Fig. S6B). These results suggest an important con-
tribution of the adipocyte cGAS-cGAMP-STING pathway to sys-
temic inflammatory events. In addition, we also observed a slight
increase of cGAS-cGAMP-STING signaling in MΦ and SVF-MΦ-
Neg fractions from DsbA-LfKO mice fed either an ND or HFD
(Fig. 3F and Fig. S4 G–I), indicating cross-talk between adipocytes
and adipose-resident immune cells. Together with the findings that
the cGAS-cGAMP-STING pathway is also activated in macro-
phage and SVF fractions of HFD-fed obese mice (Fig. S1 C–G),
our results suggest that activation of the cGAS-cGAMP-STING
pathway in adipose-resident macrophages may also play an im-
portant role in obesity-induced inflammation and metabolic dys-
function. Future studies using macrophage-specific DsbA-L and
cGAS knockout mice will be necessary to test this hypothesis.
The precise mechanism by which DsbA-L protects against diet-

induced mitochondrial dysfunction and mtDNA release remains
unclear. DsbA-L is a 25-kDa protein originally identified from the
mitochondrial matrix and named GST-kappa (15). However, sub-
sequent analysis of the complete amino acid sequence revealed that
GST-kappa had little sequence similarity to any other members of
the GST family (29, 31) but shares high sequence and secondary
structure homology to Escherichia coli disulfide-bond A oxidore-
ductase DsbA (32, 33). Nevertheless, GST-kappa does not have the
classic CXXC motif, which is involved in disulfide-bond formation
in DsbA and other oxidoreductases, and thus GST-kappa does not
promote protein disulfide-bond formation in vitro (17, 21, 23). For
these reasons, we renamed this protein DsbA-like protein, or DsbA-
L (23). We previously found that DsbA-L is also localized in the ER
and plays an important role in adiponectin multimerization and
function (23, 34). However, DsbA-L by itself is not sufficient to
promote adiponectin multimerization in the presence of oxidative
glutathione and trimeric adiponectin by in vitro assay (23), sug-
gesting that DsbA-L may function as a chaperone, rather than
acting as an oxidoreductase to directly catalyze intermolecular
disulfide-bond formation in the ER. One possible mechanism by
which DsbA-L improves mitochondrial function may be that this
protein also functions as a chaperone in mitochondria, where it
facilitates the correct folding, localization, and/or interaction of
important mitochondrial proteins involved in mtDNA replication,
transcription, or structural integrity to maintain mtDNA homeo-
stasis. Thus, DsbA-L deficiency, especially under stress conditions
such as obesity, may perturb mtDNA biosynthesis and/or disturb
mtDNA stability, resulting in mtDNA release into the cytosol.
Another possible mechanism underlying DsbA-L deficiency-
induced mtDNA release may be the overproduction of ROS.
The electron transport chain (ETC) is the major site for ROS
production, and DsbA-L deficiency greatly increased mitochon-
drial ROS levels (Fig. S3A). mtDNA is especially susceptible to
attack by ROS due to its close proximity to the ETC and the lack
of protective histones (35, 36). In fact, oxidized mtDNAs have
been shown to be released into the cytosol, where they activate
downstream events such as cGAS-cGAMP-STING–dependent
activation of TBK1 and inflammasome formation (3, 13, 30, 37).
Therefore, increased ROS, which could be due to reduced ROS
scavenging or impaired mitochondrial oxidative respiration in
DsbA-L–deficient adipocytes, could account for the increased
mtDNA release in obesity- and DsbA-L–deficient adipocytes.
Mitochondria are critical for cell function due to their essential

roles in the production of ATP, the energy currency of the cell, and
the regulation of whole-body energy homeostasis. Mitochondrial
dysfunction is associated with not only metabolic diseases such as
obesity, insulin resistance, and type II diabetes but also with car-
diovascular diseases, aging, neuron degenerative diseases, immune
dysfunction, and cancer (38–41). Here we observed an increase in
mtDNA release-induced activation of the cGAS-cGAMP-STING
pathway in HFD-fed C57BL/6 mice. Although it remains unclear
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whether mitochondrial stress-induced mtDNA release is a conse-
quence or a cause of diet-induced obesity, DsbA-L deficiency at
least clearly demonstrates that mitochondrial dysregulation can
cause mtDNA release-induced activation of the cGAS-cGAMP-
STING pathway and inflammation in adipocytes, thereby exacer-
bating obesity and causing insulin resistance.
In summary, our study demonstrates that obesity promotes

mtDNA release into the cytosol, where it engages the DNA-
sensing cGAS-cGAMP-STING pathway. We identify DsbA-L as a
key player in preserving mitochondrial homeostasis since its de-
ficiency triggers mtDNA release-induced activation of the cGAS-
cGAMP-STING signaling pathway, thereby activating sterile
chronic inflammation and subsequently leading to insulin re-
sistance and metabolic dysfunction (Fig. 4G). Our study provides
evidence showing that the DNA-sensing cGAS-cGAMP-STING
pathway plays a critical role in metabolism and energy homeo-
stasis, beyond its well-characterized roles in immune surveillance.
Further characterization of this pathway in metabolic tissues will
help broaden our understanding of the pathogenesis of obesity,
and promote the development of new pharmacological tools to
treat obesity and its related metabolic diseases.

Materials and Methods
Animals.All animal experiments were performed according to the procedures
approved by University of Texas Health at San Antonio (UTHSA)’s Animal
Care and Use Committee. Fat-specific DsbA-L knockout mice (DsbA-LfKO)

were generated by crossing DsbA-L Loxp mice (16) with adiponectin-Cre
mice (Jackson Laboratory; stock no. 010803). Male C57BL/6 mice (Jackson
Laboratory) age 8 wk were fed a 60% HFD (Research Diets) or normal chow
diet for 16 wk and used to perform Western blot and mtDNA release ex-
periments. Male homozygous Leprdb mice (db/db) age 8 wk and their control
heterozygous mice were obtained from the Jackson Laboratory and used for
Western blot analysis. Male DsbA-LfKO mice and LoxP control littermates
were fed a normal chow diet or 45% HFD (Research Diets) for all of the
following experiments.

Cell Study and Adipocyte Isolation. The 3T3-L1 cell line was purchased from
ATCC. Primary stromal vascular fractions and adipocytes from murine epi-
didymal white fat and inguinal white fat depots were digested in isolation
buffer containing 4% BSA and 1.5 mg/mL collagenase A (Roche) for 25 min at
37 °C with gentle agitation. The cell suspension was filtered through a
100-μm filter and then centrifuged at 700 × g for 3 min to separate floating
adipocytes from the SVF pellet. Purified adipocytes were washed in PBS
twice for further experiments. The SVF was cultured and differentiated to
adipocytes as described previously (23). Details of all other experimental
procedures can be found in SI Materials and Methods.
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